Renormalisation of the Two-Dimensional Border-Collision Normal
 Form

Indranil Ghosh, David J. W. Simpson
School of Mathematical and Computational Sciences
Massey University, Palmerston North, New Zealand

February 8, 2022

Border-collision normal form

- Piecewise-linear maps arise when modeling systems with switches, thresholds and other abrupt events.
- In our project, we study the two-dimensional border-collision normal form [H.E. Nusse and J.A. Yorke, 1992], given by

$$
f_{\xi}(x, y ; \mu)= \begin{cases}{\left[\begin{array}{cc}
\tau_{L} & 1 \\
-\delta_{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right],} & x \leq 0 \\
{\left[\begin{array}{cc}
\tau_{R} & 1 \\
-\delta_{R} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right],} & x \geq 0\end{cases}
$$

- Here $(x, y) \in \mathbb{R}^{2}$, and $\xi=\left(\tau_{L}, \delta_{L}, \tau_{R}, \delta_{R}\right) \in \mathbb{R}^{4}$ are the parameters.

Banerjee-Yorke-Grebogi region in parameter space

Figure: Sketch of the parameter region $\Phi_{\text {BYG }}$ [S. Banerjee, J.A. Yorke, and C. Grebogi. Robust chaos. Phys. Rev. Lett., 80(14):3049- 3052, 1998.], with $\delta_{L}=\delta_{R}=0.01$.

Phase portrait of a chaotic attractor

Figure: A sketch of the phase portrait of f_{ξ} with $\xi \in \Phi_{\text {BYG }}$.

Renormalisation I

－Renormalisation involves showing that，for some member of a family of maps，a higher iterate or induced map is conjugate to different member of this family of maps．
－The renormalisation technique（Feigenbaum，1970＇s）proves that the bifurcation values in period－doubling cascades for one－dimensional unimodal maps converge at a constant rate（ $F \simeq 4.669 \ldots$ ），which is universal．For example，the logistic map given by

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right),
$$

has the following bifurcation diagram．

Renormalisation II

Figure: Bifurcation diagram for the logistic map.

Renormalisation IV

－Let \mathfrak{U} denote the collection of all unimodal maps $f:[-1,1] \rightarrow[-1,1]$ ，with maximum at $x=0$ ，and with $f(0)=1$ ．Then，the renormalisation operator $\mathfrak{R}: \mathfrak{U} \rightarrow \mathfrak{U}$ is given by，

$$
(\Re f)(x)=-\frac{1}{a} f^{2}(-a x)
$$

provided，$a=-f(1), b=f(a), 0<a<b<1$ and $f(b)<a$ ．
－The fixed point of \mathfrak{R} is hyperbolic．One of its eigenvalues has modulus greater than 1，and this eigenvalue is Feigenbaum＇s constant F［Feigenbaum，1975］．

Renormalisation operator I

－Although the second iterate f_{ξ}^{2} has four pieces，relevant dynamics arise in only two of these．We have

$$
f_{\xi}^{2}(x, y)= \begin{cases}{\left[\begin{array}{cc}
\tau_{L} \tau_{R}-\delta_{L} & \tau_{R} \\
-\delta_{R} \tau_{L} & -\delta_{R}
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\tau_{R}+1 \\
-\delta_{R}
\end{array}\right],} & x \leq 0 \\
{\left[\begin{array}{cc}
\tau_{R}^{2}-\delta_{R} & \tau_{R} \\
-\delta_{R} \tau_{R} & -\delta_{R}
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\tau_{R}+1 \\
-\delta_{R}
\end{array}\right],} & x \geq 0\end{cases}
$$

－Now f_{ξ}^{2} can be transformed to $f_{g(\xi)}$ ，where g is the renormalisation operator $g: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ ，given by

$$
\begin{aligned}
\tilde{\tau}_{L} & =\tau_{R}^{2}-2 \delta_{R} \\
\tilde{\delta}_{L} & =\delta_{R}^{2} \\
\tilde{\tau}_{R} & =\tau_{L} \tau_{R}-\delta_{L}-\delta_{R} \\
\tilde{\delta}_{R} & =\delta_{L} \delta_{R}
\end{aligned}
$$

Renormalisation operator II

－We perform a coordinate change to put f_{ξ}^{2} in the normal form ：

$$
\left[\begin{array}{c}
\tilde{x}^{\prime} \\
\tilde{y}^{\prime}
\end{array}\right]=\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
\tilde{\tau}_{L} & 1 \\
-\tilde{\delta}_{L} & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right],} & \tilde{x} \leq 0, \\
{\left[\begin{array}{cc}
\tilde{\tau}_{R} & 1 \\
-\tilde{\delta}_{R} & 0
\end{array}\right]\left[\begin{array}{c}
\tilde{x} \\
\tilde{y}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right],} & \tilde{x} \geq 0
\end{array}\right.
$$

Results I

- We consider the parameter region

$$
\Phi=\left\{\xi \in \mathbb{R}^{4} \mid \tau_{L}>\delta_{L}+1, \delta_{L}>0, \tau_{R}<-\left(\delta_{R}+1\right), \delta_{R}>0\right\} .
$$

- The stable and the unstable manifolds of the fixed point Y intersect if and only if $\phi(\xi) \leq 0$, where,

$$
\phi(\xi)=\delta_{R}-\left(\tau_{R}+\delta_{L}+\delta_{R}-\left(1+\tau_{R}\right) \lambda_{L}^{\mu}\right) \lambda_{L}^{\mu}
$$

- Banerjee, Yorke and Grebogi observed that an attractor is often destroyed at $\phi(\xi)=0$ which is a homoclinic bifurcation, and thus focused their attention on the region

$$
\Phi_{\mathrm{BYG}}=\{\xi \in \Phi \mid \phi(\xi)>0\}
$$

Figure: Sketch of the parameter region Φ_{BYG}, with $\delta_{L}=\delta_{R}=0.01$.

Results III

- For all $n \geq 0$ let

$$
\zeta_{n}(\xi)=\phi\left(g^{n}(\xi)\right),
$$

where $\zeta_{n}(\xi)=0$ is the $n^{\text {th }}$ preimage of $\phi(\xi)=0$ under the operator g.

- The regions \mathcal{R}_{n} for all $n \geq 0$ are thus generated, having the form:

$$
\mathcal{R}_{n}=\left\{\xi \in \Phi \mid \zeta_{n}(\xi)>0, \zeta_{n+1}(\xi) \leq 0\right\} .
$$

Figure: The sketch of two dimensional cross-section of \mathcal{R}_{n} when $\delta_{L}=\delta_{R}=0.01$.

Figure: The sketch of two dimensional cross-section of \mathcal{R}_{n} when $\delta_{L}=\delta_{R}=0.5$.

Results VI

Theorem

The \mathcal{R}_{n} are non-empty, mutually disjoint, and converge to the fixed point ($1,0,-1,0$) as $n \rightarrow \infty$. Moreover,

$$
\Phi_{\mathrm{BYG}} \subset \bigcup_{n=0}^{\infty} \mathcal{R}_{n} .
$$

- Let,

$$
\Lambda(\xi)=\operatorname{cl}\left(W^{u}(X)\right)
$$

Theorem

For the map f_{ξ} with any $\xi \in \mathcal{R}_{0}, \Lambda(\xi)$ is bounded, connected, and invariant. Moreover, $\Lambda(\xi)$ is chaotic (positive Lyapunov exponent).

Results VII

Theorem

For any $\xi \in \mathcal{R}_{n}$ where $n \geq 0, g^{n}(\xi) \in \mathcal{R}_{0}$ and there exist mutually disjoint sets $S_{0}, S_{1}, \ldots, S_{2^{n}-1} \subset \mathbb{R}^{2}$ such that $f_{\xi}\left(S_{i}\right)=S_{(i+1) \bmod 2^{n}}$ and

$$
f_{\xi}^{2^{n}} \mid s_{i} \text { is affinely conjugate to } f_{g^{n}(\xi)} \mid \wedge\left(g^{n}(\xi)\right)
$$

for each $i \in\left\{0,1, \ldots, 2^{n}-1\right\}$. Moreover,

$$
\bigcup_{i=0}^{2^{n}-1} S_{i}=\operatorname{cl}\left(W^{u}\left(\gamma_{n}\right)\right)
$$

where γ_{n} is a saddle-type periodic solution of our map f_{ξ} having the symbolic itinerary $\mathcal{F}^{n}(R)$ given by Table 1.

Results VIII

n	$\mathcal{F}^{n}(\mathcal{W})$
0	R
1	$L R$
2	$R R L R$
3	LRLRRRLR
4	$R R L R R R L R L R L R R R L R$

Table：The first 5 words in the sequence generated by repeatedly applying the substitution rule $(L, R) \mapsto(R R, L R)$ to $\mathcal{W}=R$ ．

Results IX

Summary

- We have used renormalization to explain how the parameter space Φ_{BYG} is divided into regions according to the number of connected components of an attractor.
- It remains to better understand the attractor \mathcal{R}_{0} more and determine the analogue of Φ_{BYG} for higher dimensional maps.
- Our results have been submitted to Nonlinearity (arXiv:2109.09242, 2021).

Acknowledgements

Our research is supported by Marsden Fund contract MAU1809，managed by Royal Society Te Apãrangi．

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN

ROYAL SOCIETY TE APĀRANGI

The End

Thank you！Questions？

